

VITLAB® micropipette

Prüfanweisung (SOP) Standard Operating Procedure

VITLAB GmbH

Linus-Pauling-Str.1 63762 Grossostheim Germany

tel: +49 6026 97799-0 fax: +49 6026 97799-30

info@vitlab.com www.vitlab.com

Inhalt

1. Einleitung	3
2. Vorbereitung der Pipette auf die Prüfung	4
3. Prüfgeräte und Messumgebung	6
4. Funktionsprüfung	7
5. Kalibrieren - Volumen kontrollieren	8
5. Auswertung	9
7. Tabellen	11

1. Einleitung

Der Aufbau und die Prüfung von Kolbenhubpipetten, wie z.B. die VITLAB® micropipette, werden in der Norm DIN EN ISO 8655 beschrieben. Diese Prüfanweisung ist die Übertragung dieser Norm in eine praxisgerechte Form.

Wir empfehlen alle 3 - 12 Monate eine Überprüfung der Kolbenhubpipette. Der Zyklus kann jedoch an Ihre individuellen Anforderungen angepasst werden. Bei hoher Gebrauchshäufigkeit und / oder Verwendung von aggressiven Medien sollte häufiger geprüft werden.

Diese Prüfanweisung kann als Grundlage zur Prüfmittelüberwachung nach DIN EN ISO 9001, DIN EN ISO 10012 und DIN EN ISO / IEC 17025 verwendet werden.

Die VITLAB® micropipette -8 / -12 hat durch die 8 bzw. 12 Kanäle den wesentlichen Vorteil, dass bei einer Betätigung 8 bzw. 12 Pipettierungen gleichzeitig durchgeführt werden. Bei der Überprüfung einer Mehrkanalpipette erzeugt dies allerdings einen erhöhten Aufwand, da nach ISO 8655 jeder Kanal einzeln überprüft werden muss. So müssen bei der VITLAB® micropipette -8 insgesamt 240 Wägungen, bei der 12-Kanal Pipette sogar 360 Wägungen durchgeführt werden, um ein aussagekräftiges Ergebnis zu erhalten. Dies führt zu einem hohen zeitlichen Aufwand bei der Überprüfung von Mehrkanalpipetten.

Um den internen Prüfaufwand für die regelmäßig nach DIN EN ISO 9001, DIN EN ISO 10012 und DIN EN ISO / IEC 17025 sowie den GLP-Richtlinien geforderten Überprüfungen zu reduzieren, bietet der Kalibrierservice von VITLAB Ihnen eine optimierte und normkonforme Prüfung und Auswertung der VITLAB® micropipettes gemäß ISO 8655. Mehr Informationen dazu finden Sie in Kapitel 8. Alle Serviceleistungen können vom Anwender oder durch den Fachhandel mit VITLAB abgewickelt werden.

3

2. Vorbereitung der Pipette auf die Prüfung

2.1 Geräteidentifikation

Gerätetyp und Nennvolumen ermitteln

Seriennummer ablesen (hinter der Abwurftaste)

Falls kundeneigene Kennzeichnung vorhanden

- ► In das Prüfprotokoll eintragen
- ► Nummer in das Prüfprotokoll eintragen
- ► Kennzeichnung in das Prüfprotokoll eintragen

2.2 Mindestausstattung für die VITLAB® micropipette

Gebrauchsanleitung bereitlegen

VITLAB® micropipette

Pipettenspitzen

► Nur mit Originalteilen verwenden

► Nur geeignete Pipettenspitzen verwenden. Die besten Ergebnisse werden mit Originalpipettenspitzen von VITLAB erzielt.

2.3 Reinigen

Pipettenschaft säubern

Gehäuse ausreichend säubern

Flüssigkeitsreste im Gerät?

Bei Mehrkanalpipetten: V- bzw. O-Ringe beschädigt? ► Abwischen mit weichem Tuch, so dass keine Medienreste mehr anhaften

► Reinigung mit feuchtem Tuch (Wasser oder verdünnte Seifenlösung)

 Gerät zerlegen und reinigen (siehe Gebrauchsanleitung)

► Keine Medienreste! V- und O-Ringe können ausgetauscht werden (s. Gebrauchsanleitung)

2.4 Visuelle Prüfung auf Beschädigungen oder Undichtigkeit

Gehäuse und Abwerfer	► Allgemeine Beschädigungen?
Kolben	► Kratzer oder Verschmutzungen auf der Oberfläche?
Dichtung	► Kratzer oder Verschmutzungen auf der Oberfläche?
Bei Mehrkanalpipetten: V- bzw. O-Ringe beschädigt?	► Kratzer auf der Oberfläche? Deformation? Sichtbare Beschädigungen?
	► Ergebnisse in das Prüfprotokoll eintragen

Mögliche Fehler am Gerät und die daraus folgenden Maßnahmen

(Weitere Maßnahmen und Behebung anderer Fehler finden Sie in der Gebrauchsanleitung)

Fehler	Mögliche Ursachen	Maßnahmen
Pipettenspitze dichtet nicht mehr	Kratzer an der Pipettenschaftspitze	► Ersatzteile beschaffen (siehe Gebrauchsanleitung)
Gerät ist schwergängig und / oder undicht	Dichtung / Kolben verschmutzt oder beschädigt	► Ersatzteile beschaffen (siehe Gebrauchsanleitung)
V-Ringe bzw. O-Ringe beschädigt	Mechanische Beschädigung Abnutzung	► V- bzw. O-Ringe wechseln (siehe Gebrauchsanleitung)

3. Prüfgeräte und Messumgebung

Prüfraum

Die Kalibrierung sollte in einem zugfreien Raum mit konstanter Temperatur- und Luftfeuchtigkeit durchgeführt werden.

Temperatur

Die zu prüfende Pipette und die Prüfflüssigkeit müssen ein Gleichgewicht mit den Raumbedingungen erreicht haben. Dafür die Pipette (unverpackt) und Flüssigkeit mindestens 2 Stunden im Prüfraum verweilen lassen und Temperaturveränderungen (z.B. durch Sonneneinstrahlung) vermeiden. Dann einen Abgleich der Geräte-, Flüssigkeits- und Raumtemperatur durchführen.

Prüfflüssigkeit

Destilliertes oder entionisiertes Wasser, mindestens Qualität 3 entsprechend ISO 3969. Abgleich der Wasser- und Raumtemperatur auf max. 0,5 °C.

Waage

Empfohlene Spezifikationen siehe Tabelle:

Gewähltes Volumen* des zu prüfenden Gerätes V	Auflösung der Waagenanzeige mg	Wiederholpräzision und Linearität mg	Standardmess- unsicherheit µl
1 µl < V ≤ 10 µl	0,001	0,002	0,002
10 μl < V ≤ 100 μl	0,01	0,02	0,02
100 μl < V ≤ 1000 μl	0,1	0,2	0,2
1 ml < V ≤ 10 ml	0,1	0,2	0,2

^{*}Aus praktischen Erwägungen darf das Nennvolumen zur Auswahl der Waage verwendet werden

Thermometer

Nur Thermometer mit einer maximalen Messabweichung von 0,2 °C verwenden.

Hygrometer

Unter Einbeziehung der Messunsicherheit sollte eine relative Luftfeuchtigkeit von 40 - 60% erreicht werden.

Aufnahmegefäß

Gefäß (z.B. Erlenmeyerkolben) gefüllt mit Prüfflüssigkeit. Eine Abkühlung des Wassers im Aufnahmegefäß durch Verdunstung verhindern.

Wägegefäß

Gefäß (z.B. Erlenmeyerkolben) mit etwas Wasser füllen, so dass mindestens der Boden bedeckt ist. Bei Prüfvolumen < 100 µl für Verdunstungsschutz sorgen.

4. Funktionsprüfung

Neue Pipettenspitze aufstecken und Nennvolumen einstellen

Prüfflüssigkeit aufnehmen

Dichtigkeitsprüfung: Pipette ca. 10 Sekunden senkrecht halten und beobachten, ob sich ein Tropfen bildet

Prüfflüssigkeit wieder abgeben, dazu Pipettenspitze an die Gefäßwand halten und an der Gefäßwand abstreifen

Spitze abwerfen

- ► Aufnehmen der Flüssigkeit sehr langsam oder nicht möglich: Hinweise in Tabelle (s.u.) beachten
- ▶ Bildet sich ein Tropfen an der Pipettenspitze: Hinweise in der Tabelle (s.u.) beachten
- ► Der Pipettierknopf muss sich leichtgängig und ruckfrei bewegen lassen
- ► Ergebnis in das Prüfprotokoll eintragen

Mögliche Fehler und die daraus folgenden Maßnahmen

(Weitere Maßnahmen und Behebung anderer Fehler finden Sie in der Gebrauchsanleitung)

Fehler	Mögliche Ursachen	Maßnahmen
Ansaugen nicht möglich oder sehr langsam	Pipettenschaft oder Pipettenschaftspitze verstopft	► Reinigung durchführen (siehe Gebrauchsanleitung)
Tropfen bildet sich an der	Spitze nicht richtig aufgesteckt	► Neue Spitze fest aufstecken
Pipettenspitze	Dichtung oder Kolben defekt	➤ Dichtung bzw. Kolben reinigen oder erneuern (siehe Gebrauchsanleitung)
	V- bzw. O-Ring am Pipettenschaft defekt	➤ V- bzw. O-Ring erneuern (siehe Gebrauchsanleitung)

Pipetten mit Nennvolumen ≤ 50 µl

Bei Pipetten mit einem Nennvolumen $\leq 50~\mu$ l sind die Fehlergrenzen meist kleiner als 0,5 μ l. Auf Grund dieser relativ geringen Fehlergrenzen hat die Verdunstung von Wasser während der Prüfung einen relativ hohen Einfluss auf das Messergebnis. Daher muss für Pipetten $\leq 50~\mu$ l ein Prüfverfahren angewendet werden, das die Verdunstung weitgehend verhindert. Um für einen ausreichenden Verdunstungsschutz zu sorgen, können z. B. spezielle Pipettenkalibrierwaagen mit sog. Verdunstungsfallen verwendet werden.

Rückführung der Prüfung auf das nationale Normal

Durch die Verwendung von kalibrierten Prüfmitteln (Waage und Thermometer) wird die Forderung der DIN EN ISO 9001, DIN EN ISO 10012 und DIN EN ISO / IEC 17025 nach Rückführung der Prüfung auf das nationale Normal erfüllt. Das Kalibrieren der Waage kann z. B. durch DAkkS-Kalibrierung, eine direkte amtliche Eichung der Waage oder durch Kalibrieren der Waage mit entsprechend rückgeführten Gewichten (entsprechender Genauigkeit) erfolgen. Das Kalibrieren des Thermometers, Hygrometers und Barometers kann ebenso durch eine DAkkS-Kalibrierung, eine amtliche Eichung oder durch Vergleich mit entsprechend rückgeführten Thermometern (bei definierten Bedingungen) erfolgen.

5. Kalibrieren - Volumen kontrollieren

Hinweis: Bei Mehrkanalpipetten ist eine Einzelkanalprüfung durchzuführen!

- 1. 10% bzw. 20% des Nennvolumens einstellen.
- 2. Temperatur der Prüfflüssigkeit bestimmen.
 - ► In das Prüfprotokoll eintragen.
- 3. Wägegefäß mit etwas Prüfflüssigkeit gefüllt auf die Waage stellen und die Waage tarieren.
- 4. Neue Pipettenspitze aufstecken. Bei Mehrkanalpipetten neue Pipettenspitze an einem Kanal aufstecken. Nun die Konditionierung (Vorbenetzung) durchführen, dazu die Prüfflüssigkeit 5x aufnehmen und wieder abgeben.
 - ▶ Die Konditionierung erhöht die Genauigkeit der Prüfung.
- 5. Prüfflüssigkeit aus dem Aufnahmegefäß aufnehmen. Dazu den Pipettierknopf bis zum ersten Anschlag drücken. Die Pipettenspitze 2 4 mm senkrecht in die Flüssigkeit eintauchen. Bei 5 ml und 10 ml Pipetten die Spitze 3 6 mm eintauchen. Dann den Pipettierknopf langsam und gleichmäßig zurückgleiten lassen.
 - ► Wartezeit beachten: Ca. 1 Sekunde in der Prüfflüssigkeit verweilen. Bei 5 ml und 10 ml Pipetten ca. 10 Sekunden warten.
- 6. Prüfflüssigkeit in das Wägegefäß abgeben. Pipettenspitze im Winkel von 30° 45° an die Gefäßwand anlegen. Dann Pipettierknopf bis zum ersten Anschlag drücken und festhalten. Die Pipettenspitze mit Überhub (zweiter Anschlag) völlig entleeren. Pipettenspitze an der Gefäßwand über eine Länge von 10 mm abstreifen und Pipettierknopf gleichmäßig zurückgleiten lassen.

- 7. Wägegefäß auf die Waage stellen und Wägewert notieren.
 - ► In das Prüfprotokoll eintragen.
- 8. Waage wieder tarieren.
- 9. Die Punkte 5 8 zehnmal (bei Mehrkanalpipetten zehnmal pro Kanal) durchführen.
 - Die Wägewerte in das Prüfprotokoll eintragen. Das ergibt mindestens 24 (8-Kanal) bzw. 36 (12-Kanal) Wägewerte.
- 10. Danach analog bei 50% und 100% des Nennvolumens pipettieren. Jeweils bei Punkt 4 beginnen.
 - ▶ Die Wägewerte in das Prüfprotokoll eintragen. Dies ergibt für die Einkanalpipette insgesamt 30 Wägewerte, für die Mehrkanalpipetten 72 (8-Kanal) bzw. 108 (12-Kanal) Wägewerte.

6. Auswertung

Die aus der gravimetrischen Prüfung erhaltenen Wägewerte sind nur Massewerte des pipettierten Volumens ohne Korrektur des Luftauftriebs. Um das tatsächliche Volumen zu erhalten, muss eine Korrekturrechnung zur Berücksichtigung von Wasserdichte und Luftauftrieb durchgeführt werden.

Bei Mehrkanalpipetten müssen die folgenden Berechnungen für jeden Kanal separat durchgeführt werden

Mittelwert der Wägewerte (bei Mehrkanalpipetten eines Kanals) Beispiel für 10 Wägewerte:

$$\overline{X} = \frac{X_1 + X_2 + X_3 \dots + X_{10}}{10}$$

Mittelwert des Volumens (eines Kanals)

$$\overline{V} = \overline{x} \cdot Z$$

- ► Faktor 7 siehe Tabelle XY
- ► Wert in das Prüfprotokoll eintragen

Standardabweichung des Volumens (eines Kanals)

$$s = Z \cdot \sqrt{\frac{(x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 + (x_3 - \overline{x})^2 + \dots + (x_{10} - \overline{x})^2}{9}}$$
 Faktor Z siehe Tabelle XY
$$\blacktriangleright \text{ Wert in das Prüfprotokoll eintragen}$$

- ► Faktor Z siehe Tabelle XY

Richtigkeit (eines Kanals)

$$R [\%] = \frac{\overline{V} - V_0}{V_0} \cdot 100$$

► Wert in das Prüfprotokoll eintragen

Variationskoeffizient (eines Kanals)

$$VK\% = \frac{100 \text{ s}}{\overline{V}}$$

► Wert in das Prüfprotokoll eintragen

Vergleich Istwerte - Sollwerte (bei Mehrkanalpipetten pro Kanal)

Fehlergrenzen siehe Tabelle 7.2.1 und 7.2.2 (bei Mehrkanalpipetten siehe Tabelle 7.3.1 und 7.3.2) oder Definition eigener Fehlergrenzen.

Ergebnis

Die errechneten Werte R [%] und VK [%] müssen (bei Mehrkanalpipetten je Kanal) kleiner oder gleich den Fehlergrenzen sein, dann ist das Gerät in Ordnung.

Falls die errechneten Werte größer als die Fehlergrenzen sind:

- ▶ Überprüfen, ob alle Anweisungen richtig durchgeführt wurden
- ► Hinweise zum Thema "Störung was tun?" in der Gebrauchsanleitung beachten
- ► Die VITLAB® micropipette nach Anweisung in der Gebrauchsanleitung justieren

Führen diese Maßnahmen nicht zum Erfolg, empfehlen wir Ihnen den VITLAB Kalibrierservice in Anspruch zu nehmen.

Mögliche Volumenfehler und die daraus folgenden Maßnahmen

Fehler	Mögliche Ursachen	Maßnahmen
Volumen zu klein	Pipettenspitze nicht richtig aufgesteckt Dichtung oder Kolben defekt	 Neue Pipettenspitze verwenden und fest aufstecken Dichtung bzw. Kolben reinigen oder erneuern und leicht fetten (siehe Gebrauchsanleitung)
Nur Mehrkanalpipetten:	V- / O-Ring defekt	► V- / O-Ring austauschen
Volumen zu groß	Pipettierknopf zu weit gedrückt	► Genau auf den ersten Anschlag achten
Sonstige Einflussgrößen	Gerät fehlerhaft justiert Temperaturabgleich von Geräte-, Raum- und Wassertemperatur nicht abgeschlossen	Gerät neu justierenTemperaturabgleich durchführen

7. Tabellen

7.1 Faktor z - Auszug aus DIN EN ISO 8655, Teil 6. Tabelle bezieht sich auf 1013 hPa. Gültigkeitsbereich von 950 hPa bis 1040 hPa.

Temperatur	Faktor z
°C	ml / g
15	1,0020
15,5	1,0020
16	1,0021
16,5	1,0022
17	1,0023
17,5	1,0024
18	1,0025
18,5	1,0026
19	1,0027
19,5	1,0028
20	1,0029
20,5	1,0030
21	1,0031
21,5	1,0032
22	1,0033
22,5	1,0034

Temperatur	Faktor z
°C	ml / g
23	1,0035
23,5	1,0036
24	1,0038
24,5	1,0039
25	1,0040
25,5	1,0041
26	1,0043
26,5	1,0044
27	1,0045
27,5	1,0047
28	1,0048
28,5	1,0050
29	1,0051
29,5	1,0052
30	1,0054

7.2 Volumenfehlergrenzen für Einkanal-Kolbenhubpipetten

Die angegebenen Fehlergrenzen für die VITLAB® micropipette (Tabelle 7.2.2) sind Endprüfwerte bezogen auf das Sollvolumen! Diese Fehlergrenzen sind Angaben für Neugeräte bei optimierten Prüfbedingungen (ausgebildetes Personal und genormte Umgebungsbedingungen). Typischerweise werden diese Werte unter Idealbedingungen um den Faktor 2 unterschritten (Herstellererfahrung). Die absoluten Fehlerangaben (µl) werden bei keinem Teilvolumen überschritten.

Tabelle 7.2.1: Auszug aus der DIN EN ISO 8655, Teil 2.

Tabelle 7.2.2: Werte aus der Gebrauchsanweisung VITLAB® micropipette

Nennvolumen µl	R ≤ ± %	VK* ≤ %	Sollvolumen µl	R ≤ ± %	VK* ≤ %
10	1,2	0,8	10 5 1	1 1,6 7	0,5 1 4
20	1,0	0,5	20 10 2	0,8 1,2 5	0,4 0,7 2
100	0,8	0,3	100 50 10	0,6 0,8 3	0,2 0,4 1
200	0,8	0,3	200 100 20	0,6 0,8 3	0,2 0,3 0,6
1000	0,8	0,3	1000 500 100	0,6 0,8 3	0,2 0,3 0,6
5000	0,8	0,3	5000 2500 500	0,6 0,8 3	0,2 0,3 0,6
10000	0,6	0,3	10000 5000 1000	0,6 0,8 3	0,2 0,3 0,6

Zur Kalibrierung sind vom Anwender die einzuhaltenden Fehlergrenzen selbst festzulegen. Dafür bieten sich verschiedene Vorgehensweisen an:

- ► Falls es die Anwendung erfordert und die messtechnisch optimierten Prüfbedingungen vorliegen, kann der Anwender auch bei gebrauchten, intakten Volumenmessgeräten die angegebenen Fehlergrenzen erwarten.
- ▶ In Analogie zum deutschen Eichgesetz können jedoch auch Gebrauchsfehlergrenzen zugrunde gelegt werden. Die Gebrauchsfehlergrenzen entsprechen dem doppelten der Eichfehlergrenzen. Das heißt die Werte der Tabelle 7.2.2. sind zu verdoppeln!
- ► Außerdem kann der Anwender spezielle, auf seine Anwendung bezogene Fehlergrenzen festlegen, die von dem kalibrierten (justierten) Messgerät eingehalten werden sollen.

Diese Vorgehensweise ist mit den Forderungen der DIN EN ISO 9001, DIN EN ISO 10012 und DIN EN ISO / IEC 17025 zu vereinbaren.

7.3 Volumenfehlergrenzen für Mehrkanal-Kolbenhubpipetten

Die angegebenen Fehlergrenzen für die VITLAB® micropipette -8/-12 (Tabelle 7.3.2) sind Endprüfwerte bezogen auf das Sollvolumen! Diese Fehlergrenzen sind Angaben für Neugeräte bei optimierten Prüfbedingungen (ausgebildetes Personal und genormte Umgebungsbedingungen). Typischerweise werden diese Werte unter Idealbedingungen um den Faktor 2 unterschritten (Herstellererfahrung). Die absoluten Fehlerangaben (µl) werden bei keinem Teilvolumen überschritten.

Tabelle 7.3.1: Auszug aus der DIN EN ISO 8655, Teil 2

Nennvolumen VK* < ± % < % μl 10 2.4 1,6 50 2.0 8.0 100 1.6 0.6 200 1.6 0,6 300 16 0.6

Tabelle 7.3.2: Werte aus der Gebrauchsanweisung VITLAB® micropipette -8 / -12

Sollvolumen	R	VK*
µl	≤ ± %	≤ %
10	1,6	1,0
5	2,0	2,0
1	8,0	6,0
50	0,8	0,4
25	1,4	0,8
5	6,0	3,0
100	0,8	0,3
50	1,4	0,6
10	4,0	2,0
200	0,8	0,3
100	1,4	0,6
20	4,0	1,5
300	0,6	0,3
150	1,2	0,6
30	3,0	1,5

Zur Kalibrierung sind vom Anwender die einzuhaltenden Fehlergrenzen selbst festzulegen. Dafür bieten sich verschiedene Vorgehensweisen an:

- ► Falls es die Anwendung erfordert und die messtechnisch optimierten Prüfbedingungen vorliegen, kann der Anwender auch bei gebrauchten, intakten Volumenmessgeräten die angegebenen Fehlergrenzen erwarten.
- ▶ In Analogie zum deutschen Eichgesetz können jedoch auch Gebrauchsfehlergrenzen zugrunde gelegt werden. Die Gebrauchsfehlergrenzen entsprechen dem doppelten der Eichfehlergrenzen. Das heißt die Werte der Tabelle 7.3.2. sind zu verdoppeln!
- Außerdem kann der Anwender spezielle, auf seine Anwendung bezogene Fehlergrenzen festlegen, die von dem kalibrierten (justierten) Messgerät eingehalten werden sollen.

Diese Vorgehensweise ist mit den Forderungen der DIN EN ISO 9001, DIN EN ISO 10012 und DIN EN ISO / IEC 17025 zu vereinbaren.

Prüfprotokoll für Volumenmessgeräte (EX)

		1		•	<i>J</i> -	,
1. Gerät:	:					
☐ VITLAI	B® continuous E	E / RS				
☐ VITLAI	B [®] genius					
☐ VITLAI	B [®] simplex		Namovali			
☐ VITLAI	B® TA			ımen: mmer:		
☐ VITLAI	B® micropipette	!		igene Kennzeichnung:		
<u> </u>			Randene	igene Kennzerennung.		
2. Beschäd	digungen: 🗖	keine Art der Beschädigung		3. Funktionsmängel:		keine Art des Funktionsmangels
		Deschödigung beseitigt				Funktioner and all baseitiet
	u	Beschädigung beseitigt				Funktionsmangel beseitigt
4. Wasser	temperatur:		°C	Luftdruck:		
Waage:	· :			Relative Luftfeuchtig	keit: ((mindestens 35%):
-				-		
5. Wägew	erte und Ausv	wertung der gravimetrisch	nen Prüfur	ng:		
Wägewe	rte-Nr.	10 % (bzw. 20 %)		50 %		Nennvolumen
X ₁						
X ₂						
X ₃						
X ₄						
X ₅						
X ₆						
X ₇						
X ₈						
X ₉						
X ₁₀						
6. Auswe	rtung der grav	rimetrischen Prüfung:				
Rechenw		10 % (bzw. 20 %)		50 %		Nennvolumen
a ;	V					
b :	S					
С	R [%] Ist					
d	VK [%] Ist					
e	R [%] Soll					
f '	VK [%] Soll					
g	Ergebnis					
Die Prüfun	g wurde entspr	echend DIN EN ISO 8655 du	ırchgeführt	i.		
 Datum		Unterschrift				VITLAB
Datuiii		Uniterational				

Pi	rütı	protol	coll t	ür Vo	olum	enm	essg	erät	e (EX	()	
1. Gerät: VITLAB® micropipe	ette -8/	/-12		Serienr							
2. Beschädigungen:	☐ Ai	eine rt der Beschä		3. Funktionsmängel:			☐ Art	keine Art des Funktionsmangels			
		Beschädigung beseitigt							ktionsmangel beseitigt		
4. Wassertemperatur Waage: Thermometer: Luftdruck: Relative Luftfeuch Korrekturfaktor Z:	tigkei	t: (mindester	ns 35%):								
5. Wägewerte und A	uswer	rtung der gi	ravimetris	chen Prüt	fung:						
Prüfvolumen: Sollvolumen:	10) %: (mg)	μ	I R(%)		(Soll)		VK(%)		Soll	
Kanal-Nr. Wägewerte 1	2	2 3	4	5	6	7	8	9	10	11	12
X ₁ (mg) X ₂ (mg) X ₃ (mg) X ₄ (mg) X ₅ (mg) X ₆ (mg) X ₇ (mg)											
X ₂ (mg)											
X ₃ (mg)	-										
X ₄ (mg)											
X ₅ (mg)											
X ₆ (mg)											
X ₇ (mg) X ₈ (mg)											
X ₉ (mg)											
X ₁₀ (mg)	+										
X mittel (mg)											
V mittel (µl)											
R(%) Ist											
VK(%) Ist											
R(%) Soll											
VK(%) Soll											
Ergebnis R											
Ergebnis VK											

Prüfvolumen:		50 %:		µl								
Sollvolumen:		(mg)		R(%)		(Soll)		VK(%)		Soll	
Kanal-Nr. Wägewerte	1	2	3	4	5	6	7	8	9	10	11	12
X ₁ (mg)												
X ₂ (mg)												
X ₃ (mg)												
X ₄ (mg)												
X ₅ (mg)												
X ₆ (mg)												
X ₇ (mg)												
X ₈ (mg)												
X ₉ (mg)												
X ₁₀ (mg)												
X mittel (mg)												
V mittel (μl)												
R(%) Ist												
VK(%) Ist												
R(%) Soll												
VK(%) Soll												
Ergebnis R												
Ergebnis VK												

Prüfvolume	n:	Nennv	olumen:		ıl							
Sollvolume		((mg)		R(%)		(Soll)		VK(%)		Soll	
Kana Wägewert	1 1	2	3	4	5	6	7	8	9	10	11	12
X ₁ (r	ng)											
X ₂ (r	ng)											
X ₃ (r	ng)											
X ₄ (r	ng)											
X ₅ (r	ng)											
X ₆ (r	ng)											
X ₇ (r	ng)											
X ₈ (r	ng)											
X ₉ (r	ng)											
X ₁₀ (r	ng)											
X mittel (r	ng)											
V mittel (µ	ıl)											
R(%) Is	t											
VK(%) Is	t											
R(%) S	llc											
VK(%) S	llo											
Ergebnis R												
Ergebnis V	K											

Die Prüfung wurde entsprechend DIN	EN ISO 8655 durchgeführt.	
		VITLAB
Datum	Unterschrift	

Erklärung zur gesundheitlichen Unbedenklichkeit

Bitte der Gerätesendung beilegen oder per Brief (in Eilfällen vorab per Fax) einsenden.

VITLAB GmbH	
Linus-Pauling-Str.	•

63762 Grossostheim

Fax: +49 (0) 6026 9 77 99 - 30

Wir wollen unsere Mitarbeiter weitestgehend vor Gefahren durch kontaminierte Geräte schützen. Wir bitten daher um Ihr Verständnis, dass wir Kalibrierungen / Reparaturen nur ausführen können, wenn uns diese Erklärung komplett ausgefüllt und unterschrieben vorliegt.

De	Der / die Unterzeichnende erklärt verbindlich:	
>	dass die eingesandten Geräte vor dem Versand sorgfältig gereinigt und wurden.	d dekontaminiert
>	 dass von den eingesandten Geräten keine Gefahren durch bakteriologisc chemische oder radioaktive Kontamination ausgehen. 	che, virologische,
•	dass er / sie autorisiert ist, derartige Erklärungen für das vertretene Unter abgeben zu können.	rnehmen / Labor
>	► Für Kalibrierservice zusätzlich: erforderliche Kleinreparaturen bis zu einem W MwSt. sollen ohne Rückfrage ausgeführt werden (Bitte streichen, falls nicht gewünscht)	
	Firma / Labor (Stempel)	
	Name	
	Position	
	Datum, Unterschrift	
	Tel./Fax/E-Mail:	
>	► Für den Reparaturservice bitten wir um folgende zusätzliche Informationen: Festgestellter Defekt: Mit welchen Medien wurde gearbeitet:	